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Abstract. Using bosonization approach, we derive an effective low-energy theory for XXZ-symmetric spin-
1/2 zigzag ladders and discuss its phase diagram by a variational approach. A spin nematic phase emerges in
a wide part of the phase diagram, either critical or massive. Possible crossovers between the spontaneously
dimerized and spin nematic phases are discussed, and the topological excitations in all phases identified.

PACS. 75.10.Pq Spin chain models – 75.40.-s Critical-point effects, specific heats, short-range order –
75.30.Gw Magnetic anisotropy – 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions,
Luttinger liquid, etc.)

1 Introduction

The appearance of unconventional spin-liquid phases in
frustrated Heisenberg models around a critical point sep-
arating different magnetic ordered phases is a long stand-
ing, intriguing issue which has attracted notable theoret-
ical and experimental interest in recent years [1]. From a
theoretical point of view, this is quite a challenging prob-
lem which calls for a deep reexamination of standard the-
ories. Conventionally, the stability of a spin-ordered phase
may be investigated by spin-wave theory or by more so-
phisticated field-theoretical approaches based on the non-
linear σ-model. Spin-wave theory is in principle able to
detect instabilities at any wave-vector, although a reliable
description would require a systematic 1/S expansion, S
being the magnitude of the spin. The non-linear σ-model
offers a better description of the critical behavior close to
an instability point, yet it has a major limitation. Namely,
it takes into account only the long-wavelength Goldstone
modes of the ordered state under consideration, but fails
to describe the excitations at the wave-vector of the com-
peting ordered state. Hence it does not provide any infor-
mation about the phase which can emerge under increas-
ing the effect of frustration.

One-dimensional spin models might turn useful to at-
tempt an improvement of the field-theoretical approach
in view of an extension to higher dimensions. The sim-
plest example of one-dimensional frustrated spin model
is the spin-1/2 Heisenberg chain with antiferromagnetic
nearest neighbor exchange J ′ and frustrating next near-
est neighbor exchange J (for a recent review and refer-
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ences therein, see Ref. [2]). Besides the general interest,
this model might also be relevant for realistic materials,
such as Cs2CuCl4, in which magnetic Cu ions get arranged
into a zig-zag fashion [3], although these compounds are
likely more quasi-two than quasi-one-dimensional.

In the classical limit, the J-J ′ spin chain has a Néel
long range order for j = J/J ′ < 1/4, with characteristic
momentum q = π/a0. In the Néel phase time reversal sym-
metry is preserved if combined with a translation by one
lattice spacing a0. For larger values of j, a spiral ordering
at momentum satisfying cos(q a0) = −1/4 j is stabilized
at the classical level. There parity and time reversal sym-
metries are separately broken.

Quantum fluctuations modify the classical phase dia-
gram [4]. By Mermin-Wagner’s theorem, spin rotational
symmetry cannot be broken in one dimension: the Néel
long-range ordered phase turns into a quasi-long range
ordered one characterized by power-law decaying correla-
tions of the staggered magnetization. The low-energy ef-
fective critical theory is the level-1 Wess-Zumino-Novikov-
Witten (WZNW) model (free massless bosons with central
charge C = 1). On the contrary, the spiral order disap-
pears completely in favor of a spontaneously dimerized
phase. The transition point is slightly shifted with respect
to the classical value, jc � 0.241 [5,6]. Within the WZNW
model formalism, the transition is driven by a perturba-
tion which is marginally irrelevant (relevant) at j < jc

(j > jc). At j = jc a Berezinskii-Kosterlitz-Thouless tran-
sition takes place, and an exponentially small spectral gap
opens up in the region j > jc [7]. The system continuously
passes to a two-fold degenerate, spontaneously dimerized,
massive phase. Upon further increasing j, the gap reaches
its maximum at the exactly solvable Majumdar-Ghosh
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point [8], j = 1/2, after which it slowly decreases [7]. Even
though the ground state of the J-J ′ chain remains dimer-
ized at all j > jc, above the Majumdar-Ghosh point the
system reveals signatures of the classical spiral phase: the
spin-spin correlations become incommensurate, as it was
shown numerically in references [7,9]. Since this occurs
far away from the region of applicability of the SU(2)1
WZNW model, there is little scope to improve the field-
theoretical description of the gapless phase at j < jc to
account for incommensurate correlations that emerge well
above jc. More promising is to approach this problem from
the opposite side, j � 1. If J ′ = 0, the even and odd sub-
lattices of the spin chain decouple, and the model effec-
tively describes two decoupled Heisenberg chains, one for
each sublattice. Classically this corresponds to the case
when the spiral wave number is equal to q = π/2a0.
Switching on a small J ′ transforms the model to a weakly
coupled two-chain zigzag spin ladder, with the interchain
coupling giving rise to a marginally relevant perturba-
tion that opens up a gap and brings the system back
to the dimerized phase. In addition it should also move
the relevant momentum q away from π/2a0 towards π/a0.
Therefore incommensuration and the spectral gap are sup-
posed to appear together in this limit, which makes a field-
theoretical description more plausible.

Indeed, in the limit j � 1, a novel, parity-breaking
(twist) perturbation was identified in reference [10] as a
natural source of the spin incommensurabilities. The twist
term has a tendency to support a finite spin current along
the chains which would account for the expected shift of
the momentum. However, for the SU(2)-symmetric zigzag
ladder, the situation still remains rather unclear. Appar-
ently, the appearance of a nonzero spin current is not com-
patible with the requirement of unbroken spin rotational
symmetry (see, however, the discussion in Sect. 7). On the
other hand, no reliable information about the actual role
of the twist operator at the strong-coupling fixed point
can be extracted from the Renormalization Group (RG)
analysis [10] because of the perturbative nature of this
approach. Thus, the structure of the low-energy effective
field theory for the SU(2)-symmetric S = 1/2 zigzag lad-
der still remains unknown.

The situation changes much to the better in the
presence of strong spin anisotropy. Namely, close to the
XX limit, a self-consistent, symmetry-preserving mean-
field approach shows that the twist operator can stabilize
a new, spin-nematic (chiral) phase [10]. In this doubly de-
generate phase a nonzero spin current polarized along the
easy axis flows along the ladder, and the transverse spin-
spin correlations are incommensurate and may even decay
algebraically within some parameter range, as it is the
case at the XX point. This picture is supported by recent
numerical simulations [11–14]. In particular, the numeri-
cal work by Hikihara et al. [11,12] has indeed confirmed
the existence of the critical spin-nematic phase in a broad
region of the phase diagram for spin-anisotropic chains,
both for integer and half-integer spins. NMR experiments
with compound CaV2O24 [15] having a spin-1 double-
chain zigzag magnetic structure have revealed the gapless

nature of the spectrum, which may be an indication to the
critical chiral state of this material. On the other hand,
numerical simulations have revealed the existence of a new
gapped chiral phase in a very narrow region between the
dimerized phase and the critical chiral phase, but, within
numerical accuracy, only for integer spins. In that gapped
phase, the spin current coexists with dimerization; accord-
ingly, the spin-spin correlations are incommensurate but
decay exponentially. Recently the phase diagram for gen-
eral spin S has been studied by bosonization technique [16]
and by means of the non-linear σ-model [17], verifying the
existence of both critical and gapped chiral phased for in-
teger spin.

In this paper we present a detailed study of the phase
diagram of the XXZ-symmetric, frustrated, spin-1/2 chain
in the limit J ′ � J . Using a variational analysis of the
bosonized Hamiltonian we identify possible phases of the
model. In addition to the critical spin-nematic phase and
to the commensurate spontaneously dimerized one, we
find conditions for the existence of a massive spin-nematic
region for the S = 1/2 case. We also characterize the topo-
logical excitations which occur in each region of the phase
diagram.

In the following section we introduce the model and
discuss the bosonization approach. In Section 3 we demon-
strate how the variational approach can be applied to the
twistless ladder, in which only the dimerization operator
plays a role. Critical spin nematic phase, driven only by
the twist operator, is studied in Section 4. The interplay
between dimerization and twist operator and other emerg-
ing phases is discussed in Section 5. In Section 6 we dis-
cuss a ferromagnetic phase which turns out to be dual to
the critical spin nematic phase. In Section 7 the RG ap-
proach is implemented to study the interplay between dif-
ferent twist operators at the border of these mutually dual
phases. The last section contains conclusions.

2 The model and its low-energy limit

We consider a frustrated spin-1/2 Heisenberg chain with
2L sites, described by the Hamiltonian

H =
∑

a=x,y,z

2L∑
n=1

[
J ′

a Sa
n Sa

n+1 + Ja Sa
n Sa

n+2

]
, (1)

where

Jx = Jy = J > 0, Jz = J∆,

J ′
x = J ′

y= J ′ > 0, J ′
z = J ′∆′. (2)

In what follows, ∆ and ∆′ will be treated as independent
anisotropy parameters. Upon the transformation

S2n → S1(n), S2n+1 → S2(n),
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the model (1) is mapped onto the zig-zag spin-1/2 ladder
Hamiltonian

H =
∑

a=x,y,z

L∑
n=1

∑
i=1,2

JaSa
i (n)Sa

i (n + 1)

+
∑

a=x,y,z

∑
n

J ′
a [Sa

1 (n) + Sa
1 (n + 1)] Sa

2 (n). (3)

Let us discuss some general properties of this model. In
the limit J = 0, (1) describes a standard Heisenberg an-
tiferromagnetic chain where the spin-spin correlations are
modulated with wavevector q = π. On the contrary, when
J ′ = 0, the equivalent model (3) describes two decou-
pled spin chains. The modulating wavevector in this case
is q = π/2. When both J and J ′ are finite, we may ex-
pect two possible behaviors of the spin structure factor
S(q) = (2L)−1

∑
n,m〈Sn ·Sm〉eiq(n−m): either it is peaked

at q = π and q = π/2, or it shows a single peak at an
incommensurate q0 which smoothly moves from q = π/2
at J � J ′ towards q = π when J ′ � J . Translated into
the zig-zag ladder language, the former case implies that,
for n large,

〈S1(n) · S1(0)〉 = 〈S2(n) · S2(0)〉
= F0(|2n|) + Fπ(|2n|) + (−1)n Fπ/2(|n|),

〈S1(n) · S2(0)〉 = F ′
0(|2n + 1|) − F ′

π(|2n + 1|),
〈S2(n) · S1(0)〉 = F ′

0(|2n − 1|) − F ′
π(|2n − 1|),

where F0(|n|), Fπ(|n|) and Fπ/2(|n|), as well as the primed
ones, are smooth real functions describing the contribu-
tions of the q = 0, q = π and q = π/2 modes, respec-
tively. The difference between the 1-2 and 2-1 spin-spin
correlators, as well as the absence of inversion symme-
try n → −n, reflect the fact that the zigzag ladder lacks
two Z2 symmetries – the 1 ↔ 2 interchange symmetry
and site parity PS (understood as P

(1)
S ⊗ P

(2)
S ). However,

if the model is gapless or possesses a small spectral gap
inducing a macroscopically large correlation length, then
site-parity is effectively restored at long distances.

If, apart from q = 0, the spin structure factor has a
peak at an incommensurate wave vector q0 ∈ [π/2, π], then
we expect that

〈S1(n) · S1(0)〉 = 〈S2(n) · S2(0)〉
= F0(|2n|) + Fq0 (|2n|) cos 2nq0,

〈S1(n) · S2(n)〉 = F ′
0(|2n + 1|)

+ F ′
q0

(|2n + 1|) cos q0(2n + 1), (4)

〈S2(0) · S1(n)〉 = F ′
0(|2n − 1|)

+ F ′
q0

(|2n − 1|) cos q0(2n − 1). (5)

We notice that the presence of the modulating factors
in (4), (5) makes the the breakdown of PS even more
pronounced and, contrary to the commensurate case, this
breakdown will survive the continuum limit we are going
to adopt. Thus, the two different types of spin correla-
tions — commensurate or incommensurate — can be dis-
tinguished within a continuum, low-energy description by

an asymptotic restoration or breakdown of the site-parity
symmetry.

As discussed in the Introduction, in this paper we are
going to study the model (3), or equivalently (1), in the
limit J � J ′ of weakly coupled chains. That allows us to
adopt the well-known continuum description of each XXZ
chain based on the bosonization approach [18] (see also
Ref. [19] for a recent review) and then treat the interchain
coupling as a weak perturbation. Bosonization of the XXZ
zigzag spin-1/2 ladder has already been discussed in ref-
erence [20] where the attention was paid mostly on the
estimation of scaling dimensions of various perturbations
without a detailed analysis of the phase diagram of the
model. Here we review this procedure in more detail pay-
ing attention to the structure of the effective continuum
model which will prove important for the subsequent non-
perturbative analysis of the phase diagram, based on a
variational approach.

We start with the Abelian bosonization of a single XXZ
spin-1/2 chain. Its universal, low-energy properties in the
gapless Luttinger liquid phase (−1 < ∆ ≤ 1) are ade-
quately described by the Gaussian model for a massless
scalar field ϕ(x) = ϕR(x) + ϕL(x),

HXXZ →
∫

dx HG(x),

HG = (vs/2)
[
Q−1 (∂xϕ)2 + Q (∂xϑ)2

]
. (6)

Here ϑ(x) = −ϕR(x) + ϕL(x) is the field dual to ϕ(x),
π(x) = −∂xϑ(x) being the momentum conjugate to
ϕ(x), vs ∼ Ja0 is the velocity of the collective spin
excitations, and Q is the the Luttinger liquid parame-
ter which determines the compactification radius of the
field ϕ. The dependence Q = Q(∆) in the whole range
−1 < ∆ ≤ 1 is known from the Bethe-ansatz solution:
1/Q = 1 − (1/π) arccos∆. Thus Q varies in the range
∞ > Q ≥ 1 when ∆ takes values within the interval
−1 < ∆ ≤ 1. In particular, Q = 2 at the XX point
(∆ = 0), and Q = 1 at the SU(2)-symmetric (Heisenberg)
point (∆ = 1). Throughout this paper it will be assumed
that ∆ < 1 (i.e. Q > 1). In this case the perturbation
to the Gaussian model (6), λU cos

√
8πϕ (λU ∼ J∆),

which in terms of the Jordan-Wigner fermions originates
from Umklapp processes, is strongly irrelevant and will be
dropped in what follows.

Since for each chain only the uniform and staggered
low-energy modes survive the continuum limit, the corre-
sponding spin densities can be parametrized as follows:

Si(n) → a0Si(x), (x = na0)
Si(x) = Ji,R(x) + Ji,L(x) + (−1)nni(x) (i = 1, 2).

Here a0 is the lattice spacing, Ji,R,L are chiral compo-
nents of the smooth part of the magnetization of the
i-th chain, and ni is the staggered magnetization. The
latter is even under site parity transformation (PS) and
odd under link parity transformation (PL). A distinctive
feature of the zigzag ladder is that it is invariant under
mixed parity: P

(1)
S ⊗P

(2)
L and P

(1)
L ⊗P

(2)
S . By this symme-

try, strongly relevant terms, na
1n

a
2 , which determine the
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spin-liquid properties of the unfrustrated spin-1/2 lad-
ders [21], are instead forbidden in model (3). As a re-
sult, in the low-energy limit, the interchain perturbation,
H′ = HJJ+Htwist, is contributed by the “current-current”
interaction [7,22]

HJJ = 2
∑

a=x,y,z

gaJ
a
1 Ja

2 , (7)

and also by “twist” terms [10] allowed by the P
(1)
S ⊗ P

(2)
L

symmetry:

Htwist =
1
2

∑
a=x,y,z

gaa0T
a +

1
2
g0a0T

0. (8)

Here

T a = na
1∂xna

2 − na
2∂xna

1 , T 0 = ε1∂xε2 − ε2∂xε1, (9)

are chirally asymmetric operators with conformal spin 1,
and εi � (−1)nSi(n) · Si(n + 1) represent the continuum
limit of the dimerization operators. (Note that for a sin-
gle chain ε(x) is even under PL and odd under PS .) The
coupling constants are given by gx = gy ≡ g⊥ = J ′a0,
gz ≡ g‖ = J ′∆′a0.

The “current-current” and twist perturbations are of
different nature. The former are parity [i.e. P

(1)
S(L)P

(2)
S(L)]

symmetric. If acting alone, provided that the interchain
exchange is antiferromagnetic, these lead to spontaneous
dimerization of the ground state (see Sect. 3), the exis-
tence of massive topological excitations (spinons), and the
onset of short-ranged commensurate interchain spin cor-
relations [7,23]. The twist terms, whose appearance stems
from the frustrated nature of interchain interaction, ex-
plicitly break parity. However, by the previous discussion,
parity can be broken either in a mild way, which is the case
when the leading asymptotics of spin-spin correlations are
still commensurate, or more profoundly, i.e. explicitly in-
ducing incommensurations in the spin correlations. Both
patterns of the low-energy behavior of the system will be
discussed below.

In model (3), only the vector part of the twist pertur-
bation, gaT a, emerges in the continuum limit. The scalar
part, g0T

0, although absent in the bare Hamiltonian, is
generated in the course of RG flow [10].

For this reason we will assume that such a term is
present at the outset, with a bare amplitude g0.

Let us first bosonize HJJ . In terms of the rescaled
fields, φi = (1/

√
Q)ϕi and θi =

√
Qϑi, the “currents”

Ja
i = Ja

i,R + Ja
i,L, are given by [24]

Jz
i =

√
Q

2π
∂xφi, J+

i = − ζ

πα
e

i
√

2π
Q θi cos

√
2πQφi, (10)

where α is the short-distance cutoff of the bosonic theory,
and ζ(Q) is a nonuniversal (and yet unknown) positive
constant approaching the value 1 in the SU(2) limit. Using
the definitions (10) and passing to the symmetric and anti-
symmetric combinations of the fields, φ± = (φ1±φ2)/

√
2,

θ± = (θ1±θ2)/
√

2, we find that the longitudinal (zz) part
of HJJ adds to the Gaussian part of the model transform-
ing the latter into

HG →
∑
σ=±

vσ

2
[
Rσ(∂xθσ)2 + R−1

σ (∂xφσ)2
]
, (11)

with

1
R±

=
v±
vs

=

√
1 ± g‖Q

πvs
= 1 ± g‖Q

2πvs
+ O(g2

‖). (12)

The exact dependence of R± on the dimensionless pa-
rameter g‖Q/πvs is unknown. Therefore we will restrict
ourselves to the case |g‖|Q/πvs � 1 and keep only linear
terms in the expansion (12). For a weak interchain inter-
action (|g‖|/πvs � 1), this is justified almost for the whole
range |∆| < 1 except for a narrow region ∆+1 ∼ (g‖/πvs)2
close to the ferromagnetic transition point. The parame-
ters R± then satisfy the relation R ≡ R+ = 1/R− which
considerably simplifies the perturbative analysis.

Performing an additional rescaling of the fields, φ± =√
R±Φ±, θ± =

√
R∓Θ±, for the transverse (xx, yy) part

of HJJ one finds:

HJJ;⊥ = 2g⊥
∑

a=x,y

Ja
1 Ja

2 =
λ⊥
πα

(D + F) , (13)

D = cos
√

4πK+Φ+ cos
√

4πK−Θ−,

F = cos
√

4π/K−Φ− cos
√

4πK−Θ−, (14)

where λ⊥ = g⊥ζ2/πα, and

K+ = QR, K− = R/Q. (15)

To bosonize the twist perturbation (8), we use the
bosonization formulas for the staggered magnetization of
the S = 1/2 XXZ chain (see e.g. [19]):

nz
i = − (Cz/πα) sin

√
2πQ φi

n±
i = (Cx/πα) exp(±i

√
2π/Q θi), (16)

where Ca(Q) (a = x, z) are noniniversal parameters
(their exact dependence on Q was recently found in
Refs. [25,26]). Then, in terms of the fields Φ±, Θ±, the
twist term becomes:

Htwist =
∑

i=1,2,3

λiOi, (17)

with

λ1 ∼ C2
xg⊥/α, λ2,3 ∼ C2

z (±g‖ + g0)/α, (18)

and three bosonized twist operators O1,2,3 related to
T i (i = 0, 1, 2, 3) as follows:

O1 = T x + T y =
2√
K+

∂xΘ+ sin
√

4πK−Θ−, (19)

O2 =
T 0 + T z

2
=
√

K+∂xΦ+ sin

√
4π

K−
Φ−, (20)

O3 =
T 0 − T z

2
=

1√
K−

∂xΦ− sin
√

4πK+Φ+. (21)
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Thus, the bosonized continuum version of our model, H =
H0 + HJJ;⊥ + Htwist, represents a Gaussian field theory
of two scalar fields,

H0 =
∑
σ=±

H(σ)
0 =

∑
σ=±

vσ

2

[
(∂xΦσ)2 + (∂xΘσ)2

]
, (22)

with perturbations (13) and (17) which couple the (+) and
(−) channels together. Since H0 is perturbed in a relevant
way, the relationship between the coupling constants of
the original model (1) and the parameters of H, obtained
within our weak-coupling approach, is not to be trusted.
For this reason we will consider those parameters as in-
dependent. Namely, we will treat the Hamiltonian H as
a low-energy effective theory for a most general class of
frustrated zigzag spin-1/2 ladders, sharing the same sym-
metry properties with the model (1).

The scaling dimensions of the perturbing operators
are:

dD = K+ + K−, dF = K− +
1

K−
,

d1 = 1 + K−, d2 = 1 +
1

K−
, d3 = 1 + K+. (23)

Their relevance (d < 2) or irrelevance (d > 2) can be
understood from Figure 1 where the plane (K−, K+) is
shown. The point K+ = K− = 1 corresponds to the
SU(2)-symmetric zig-zag ladder where all perturbations
(including the Umklapp term) are marginal [10]. This
point and its close vicinity will not be discussed in this pa-
per. Due to the condition K+/K− = Q2 ≥ 1, the physical
part of the (K−, K+) plane lies above the line K+ = K−
and can be divided into four sectors in which at least one
twist operator is relevant:

sector A: d1 < 2, dF ≥ 2, d2, d3, dD> 2,

sector B: d1 < dD < 2, d2, d3, dF> 2,

sector C: dD < d1 < d3 < 2, d2, dF > 2,

sector D: d2 < 2, dF ≥ 2, d1, d3, dD> 2. (24)

Notice that, except for the operator D, all other perturb-
ing operators have a nonzero Lorentz spin: S1,2,3 = 1,
SF = 2. Strictly speaking, the conventional criterium
of relevance does not apply to such operators (see e.g.
Ref. [19]) because in higher orders of perturbation the-
ory they can generate relevant scalar perturbations. Us-
ing standard fusion rules for the Gaussian model, we
have analyzed the structure of various terms appearing
in the second order of perturbation theory. There are
marginal terms leading to small corrections to the parame-
ters K± and the velocities v±, as well as those which renor-
malize the already existing coupling constants. Besides,
new scalar operators cos 2

√
4πK+Φ+, cos 2

√
4π/K−Φ−,

cos 3
√

4πK−Θ− and cos 2
√

4πK−Θ− are generated. The
first two of them have scaling dimensions 4QR and 4Q/R,
respectively, and are therefore strongly irrelevant (since
Q > 1, R ∼ 1). The third operator has dimension
9K− = 9R/Q and becomes relevant roughly at Q > 9/2,

K+

K−

D

D

O1

O1

O1 O2

O3

A

B

C

D

1

10

Fig. 1. The phase space of the model parametrized by K+ and
K− depending on the in-chain and interchain spin anisotropy.
The shaded region is unphysical. Sectors A, B, C, D are charac-
terized by sets of relevant operators. O1,2,3 are twist operators
while D is the dimerization operator.

which is a region of the ferromagnetic intrachain exchange,
far away from the XX point. This region will not be consid-
ered here. Finally, the last perturbation ∼cos 2

√
4πK−Θ−

has dimension 4K− = 4R/Q and thus becomes relevant at
K− < 1/2, which corresponds to a vicinity of the XX point
Q = 2. However, even in that case its role is subdominant,
as we will show later.

Thus, the continuum model we will be dealing with in
the remainder of this paper reads:

H = H0 − (λ⊥/πα)D +
∑

i=1,2,3

λiOi. (25)

Where H0 is given by (22). For later purposes, we have
suitably inverted the sign of the coupling constant λ⊥ by
making a shift of the field Φ+: Φ+ → Φ+ +

√
π/4K+. In

what follows, we will analyze possible phases of this model
in the four sectors A, B, C, D by using a generalization of
the standard variational approach [27] that accounts for
ground states with nonzero values of topological charges,
〈∂xΘ−〉 and 〈∂xΦ±〉. The very possibility to incorporate
such states within the variational method stems from the
fact that the twist operators (19–21) are products of fields
belonging to different Gaussian models H±

0 .

3 Twistless ladder

Before addressing the role of the twist terms in (25) it
is instructive first to apply the variational approach to
a simpler frustrated two-leg ladder model [28,23] which,
in the continuum limit, is free from parity-breaking per-
turbations yet being spontaneously dimerized. This model
is the two leg-ladder version of the standard J1-J2 frus-
trated Heisenberg plane, in which the interchain coupling
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includes besides the usual on-rung coupling, J⊥, a frus-
trating exchange, J×, across the diagonals of the plaque-
ttes. In the XXZ case its Hamiltonian reads:

Hgen =
∑
a,n

∑
i=1,2

JaSa
i (n)Sa

i (n + 1) +
∑
a,n

J ′
aSa

1 (n)Sa
2 (n)

+
∑
a,n

J ′′
a [Sa

1 (n)Sa
2 (n + 1) + Sa

1 (n + 1)Sa
2 (n)] ,

(26)

where Ja are defined as in (2), and

J ′
x = J ′

y = J⊥, J ′
z = J⊥∆′,

J ′′
x = J ′′

y = J×, J ′′
z = J×∆′.

The P
(1)
S(L) ⊗ P

(2)
S(L) reflection symmetry of the model (26)

forbids the marginal twist perturbations to appear in the
continuum limit. The additional condition J⊥ = 2J× elim-
inates the na

1n
a
2 part of the interchain coupling and thus

makes the two decoupled Gaussian models only perturbed
by the current-current interchain interaction (7) with cou-
pling constants g⊥ = 2J×∆′a0 and g‖ = 2J×a0. So the
bosonized continuum Hamiltonian has the structure of
equation (25) with λ⊥ �= 0 and λ1,2,3 = 0. As we shall
see below, the dimerized phase it describes also occurs
in the most part of sector C of the zigzag ladder, equa-
tion (25), where D is the most relevant perturbation to
the Gaussian models (22).

To implement Coleman’s variational procedure [27], we
introduce a trial ground state,

|vac〉 = |0; m+, m−〉 = |0; m+〉 ⊗ |0; m−〉, (27)

which describes free bosons in the (±) sectors with
masses m±. These are regarded as variational parame-
ters. To estimate the variational ground-state energy den-
sity, E0(m+, m−) = 〈vac|H|vac〉, one needs to normal or-
der the Hamiltonian with the prescription that, in the
normal-mode expansions of Φ±(x) and Θ±(x), m± should
be treated as infrared regulator masses.

Upon normal ordering [27]

H(±)
0 = Nm±

[
H(±)

0

]
+

1
8πv±

[
2
(v±

α

)2

+ m2
± + O

(
m2±α2

v2±

)]
, (28)

cos
√

4πK+Φ+ =
( |m+|α

v+

)K+

Nm+

[
cos
√

4πK+Φ+

]
,

cos
√

4πK−Θ− =
( |m−|α

v−

)K−

Nm−

[
cos
√

4πK−Θ−
]
,

where Nm± are the normal ordering symbols. Subtract-
ing from (28) the diverging contribution of the zero-point
motion when α → 0, ignoring for simplicity the difference
between the velocities v± and defining the dimensionless
quantities,

E =
4πα2

v
E0, M± =

m±α

v
, z⊥ =

4λ⊥α

v
, (29)

we find that

E(M+, M−) =
M2

+ + M2−
2

− z⊥|M+|K+ |M−|K− . (30)

Withous loss of generality we choose M± to be positive.
With the condition z⊥ � 1 in mind, it should be under-
stood that the masses M±, obtained upon minimization
of E , should satisfy M± � 1.

At dD > 2 only a trivial solution exists, M± = 0,
corresponding to a critical regime in which the interchain
interaction is irrelevant and the two chains asymptotically
decouple in the low-energy limit. At dD = K+ + K− < 2
we find a nontrivial solution,

M+√
K+

=
M−√
K−

= K
K+

2(2−dD)
+ K

K−
2(2−dD)
− z

1
2−dD
⊥ , (31)

with ground state energy given by:

ED = −
(

1 − K+

2K+

)
M2

+ −
(

1 − K−
2K−

)
M2

− (32)

= −
(

2 − dD

2K+

)
M2

+. (33)

This solution describes a strong-coupling, massive phase
in which the fields Φ+ and Θ− are locked in one of in-
finitely degenerate minima of the potential U(Φ+, Θ−) =
−(λ⊥/πα)D. Since λ⊥ > 0, these minima decouple into
“even” and “odd” sets:

Φ+ =
√

π

4K+
2n+, Θ− =

√
π

4K−
2n−;

Φ+ =
√

π

4K+
(2n+ + 1) , Θ− =

√
π

4K−
(2n− + 1) ,

(34)

where n± = 0,±1,±2, .... The existence of these two in-
equivalent sets reflects two-fold degeneracy of the sponta-
neously dimerized ground state. Transverse dimerization
is the order parameter; it is defined as 〈ε⊥(x)〉 where [7,23]

ε⊥(x) = n1(x) · n2(x) ∝ C2
x cos

√
4πK−Θ−

+
1
2
C2

z

(
cos
√

4πK+Φ+ + cos
√

4π/K−Φ−
)

. (35)

Since the field Θ− is locked, its dual Φ− is disordered
and, hence, the expectation value of the last term in (35)
vanishes. Hence,

〈ε⊥〉 = ±ε0, ε0 ∝ C2
x|M−|K− +

1
2
C2

z |M+|K+ , (36)

with the two signs of ε corresponding to the even and odd
vacua, respectively.

The discrete (Z2) symmetry that is spontaneously bro-
ken in the ground state is generated by even-odd interset
transitions of the fields,

∆Φ+ = ±
√

π/4K+, ∆Θ− = ±
√

π/4K−, (37)
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and is related to translations by one lattice spacing on one
chain only. This is not an exact symmetry of the micro-
scopic Hamiltonian (26) but rather appears as an impor-
tant property of the corresponding low-energy model with
a “current-current” perturbation. The excitation spec-
trum of the model consists of pairs of massive topological
kinks (spinons) interpolating between two adjacent min-
ima of the potential U . The kinks carry two topological
quantum numbers – the total spin

Sz
+ =

√
K+

π

∫ ∞

−∞
dx ∂xΦ+(x), (38)

and the relative longitudinal spin current

jz
−/u = −

√
K−
π

∫ ∞

−∞
dx ∂xΘ−(x), (39)

which, according to (37), take fractional values ±1/2 [29].

4 Critical spin nematic phase

Now we are coming back to the continuum model (25)
for the XXZ zig-zag ladder. We begin our discussion with
sector A where the twist operator O1 is the only relevant
perturbation to the two decoupled Gaussian models H(±)

0 .
Making a shift Θ− → Θ− + (1/4)

√
π/K− we write the

low-energy model in sector A as follows:

HA = H(+)
0 + H(−)

0 +
2λ1√
K+

∂xΘ+ cos
√

4πK−Θ−. (40)

This model has the same structure as that for the
XX zigzag ladder considered in reference [10]. Not sur-
prisingly, the variational procedure we will follow now
leads to qualitatively the same results as those obtained
for the XX case within a symmetry-preserving mean-field
approach [10].

The interaction term in (40) couples the vertex oper-
ator in the (–) channel to the topological current density
∂xΘ+ in the (+) channel. The latter determines the z-
component of the spin current which flows along the chain
direction, ĵz

||,

ĵz
+ ≡ ĵz

|| = −v

√
K+

π
∂xΘ+. (41)

We observe that a finite λ1, see equation (40), generates
an additional contribution to the spin current, ĵz

⊥, which
flows along the interchain bonds. By the continuity equa-
tion related to the conservation of the z-component of the
total spin, one finds that

ĵz
⊥ = − 2√

π
λ1 cos

√
4πK−Θ−. (42)

The total spin current is therefore ĵz = ĵz
|| + ĵz

⊥, and the
twist operator O1 is nothing but a coupling term ĵz

|| ĵ
z
⊥.

The structure of the perturbation in the model (40)
suggests that the ground state admits finite values of the
mass gap in the (–) channel and the spin current in the (+)
channel. So one needs to treat both of these two quantities
as variational parameters. To this end, we keep boundary
conditions periodic for the field Θ−(x) but impose twisted
boundary conditions for the field Θ+(x):

Θ+(x) = Θ0
+(x) − 1

v

√
π

K+
jz
+x. (43)

Here Θ0
+(x) is a massless harmonic Bose field satisfying

periodic boundary conditions, and jz
+ is the average value

of the current operator (41) which is to be determined
self-consistently. The variational procedure is the same as
in the previous section with the exception that the ground
state energy in the (+) channel will acquire a piece pro-
portional to (jz

+)2. Otherwise this sector remains gapless:
M+ = 0. Using dimensionless notations,

J+ =
2πα√
K+v

jz
+, z1 = 4

√
π

K+

λ1α

v
, (44)

for the variational energy density E we obtain:

E(J+, M−) =
1
2
(
M2

− + J 2
+

)∓ z1J+M
K−
− . (45)

As before, we have chosen M− to be positive. The (∓)
signs in the interaction term correspond to two sets of vac-
uum expectation values of the field Θ−: Θ− =

√
π/K−n

and Θ− =
√

π/K−(n + 1/2), respectively.
Minimizing E with respect to M± and J+ we find that

the (–) channel is gapped,

M− = K
1

2(1−K−)

− z
1

1−K−
1 , (46)

if K− < 1. This is actually the condition d1 < 2 for the
twist operator O1 to be a relevant perturbation, which is
satisfied in sector A. At the same time, the gap supports
a finite value of the spin current in the (+) channel:

J+ = ± M−√
K−

= ±K

K−
2(1−K−)

− z
1

1−K−
1 . (47)

We notice that the dimensionless transverse current de-
fined by

Ĵ⊥ = − 2πα√
K+u

ĵz
⊥ = z1 cos

√
4πK−Θ−, (48)

also acquires a finite ground-state expectation value

J⊥ = 〈Ĵ⊥〉 = ∓z1M
K−
− , (49)

which exactly cancels J|| = J+, so that the total spin cur-
rent is zero. This results in a spin nematic (or a staggered
spin-flux) phase characterized by local spin currents cir-
culating around elementary plaquettes in an alternating
way. This type of ordering does not break time reversal
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symmetry. In sector A the spin nematic phase is critical
because the spin-density fluctuations in the (+) channel
remain gapless.

We notice that the transverse current can be associated
with the chirality order parameter. The latter is defined
as

κz = 〈κz(x)〉, κz(x) = [n1(x) × n2(x)]z , (50)

and, according to bosonization rules (16), transforms in
the continuum limit to

κz(x) ∝ cos
√

4πK−Θ−(x) ∝ ĵ⊥(x). (51)

As the dimerized phase discissed in Section 3, the spin
nematic phase is doubly degenerate because the mixed
parity symmetry P

(1)
S(L)P

(2)
L(S) is spontaneously broken in

the ground state. The two degenerate phases differ in the
signs of the longitudinal and transverse currents. Conse-
quently, apart from the massless bosonic mode describ-
ing low-energy fluctuations of the total magnetization,
there exist massive topological Z2 kinks corresponding to
vacuum-vacuum transitions,

J+ → −J+, Θ− → Θ− ±
√

π/4K−,

and thus carrying the relative spin current jz−/u = ±1/2;
see equation (39).

The presence of a finite longitudinal spin current in
the ground state makes the transverse (xy) spin correla-
tions incommensurate. Since the (+) channel is massless
and described by a Gaussian field with a K+ dependent
compactification radius, the correlations will decay alge-
braically with a nonuniversal exponent. Making use of
bosonization rules (16), equation (43) and the fact that
the field Θ− is locked, one easily finds the asymptotic be-
haviour of the transverse spin correlation function:

〈S+
1 (x)S−

1,2〉 ∝
(−1)x/a0

|x|1/2K+
e−iq0x (52)

where the wave vector q0 = πJ‖/uK+. At the XX point
(Q = 2, R = 1, K+ = 2) the spin correlations decay
according to the power law |x|1/2, in agreement with ref-
erence [10].

The ground state energy of the critical spin nematic
(CSN) phase is given by

ECSN = −
(

1 − K−
2K−

)
M2

−. (53)

Before closing this section, we would like to briefly dis-
cuss the role of the scalar operator cos 2

√
4πK−Θ−, which

is generated in a higher orders and becomes relevant at
K− < 1/2. In the presence of a finite spin current in
(+) channel, this term transforms the effective Hamil-
tonian in (–) channel to a double-frequency sine-Gordon
model: H0−λeff sin

√
4πK−Θ−−g cos 2

√
4πK−Θ−, where

λeff ∝ λ1〈jz
+〉. It is known [30,31] that the g-term can in-

duce an Ising transition to a new massive phase if g > 0
and g1/2(1−2K−) > λ

1/(2−K−)
eff . The last inequality, how-

ever, is not satisfied since the amplitude g ∼ λ2
eff is rather

small and, hence, the presence of the second harmonics
does not qualitatively affect the above results.

5 Massive spin nematic and dimerized phases

Let us now move to sectors B and C where the properties
of the systems are determined by the interplay between
two most relevant perturbations, O1 and D. The second
twist perturbation, O3, is either irrelevant (as in sector
B) or the least relevant (as in sector C). In Appendix
A we explicitly show that its role is indeed subdominant
in sectors B and C far from the SU(2)-symmetric point,
K+ = K− = 1,

Thus, the effective Hamiltonian reads:

HB/C = H(+)
0 + H(−)

0

− λ⊥
πα

cos
√

4πK+Φ+ cos
√

4πK−Θ−

+
2λ1√
K+

∂xΘ+ sin
√

4πK−Θ−. (54)

The potential in (54) contains both the sine and cosine of
the field Θ−; so its vacuum value Θ∗− is expected to be
located somewhere within the interval (0,

√
π/4K−) and

must be such that in a massive phase with M− �= 0

〈vac| cos
√

4πK−Θ∗
−|vac〉 = M

K−
− ,

〈vac| sin
√

4πK−Θ∗
−|vac〉 = 0. (55)

Setting Θ− = Θ∗− − γ/
√

4πK−, we arrive at the following
expression of the dimensionless variational energy:

E(J‖, M+, M−, γ) =
1
2
(
M2

+ + M2
− + J 2

+

)
∓ z1J+M

K−
− sin γ − z⊥M

K+
+ M

K−
− cos γ. (56)

Its minimization with respect to M±, J+ and the angle γ
yields the following set of equations:

M
K−
− (z⊥M

K+
+ sin γ ∓ z1J+ cos γ) = 0, (57)

J+ ∓ z1M
K−
− sin γ = 0, (58)

M+(1 − z⊥K+M
K+−2
+ M

K−
− cos γ) = 0, (59)

M−(1 − z⊥K−M
K+
+ M

K−−2
− cos γ

∓ z1K−J+M
K−−2
− sin γ) = 0. (60)

There are two obvious solutions of these equations in
which only one of the two perturbing operators is effec-
tive. In these solutions the angle γ takes two values: 0
and π/2. The corresponding phases are, respectively: (i) a
fully gapped D phase already described in Section 3, with
zero current (J+ = 0) and nonzero masses M± given by
equation (31), and (ii) a CSN phase with nonzero J+ and
M− given by equations (47, 46).

Equations (57)–(60) admit one more solution where
the combined effect of the two relevant perturbations leads
to an intermediate value of the mixing angle γ,

cos γ =
M+

M−

√
K−
K+

, (61)
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and a finite mass gap in the (+) channel,

M+ = (z⊥
√

K+/z1)
1

1−K+ . (62)

This is a noncritical or massive spin nematic (MSN) phase
characterized by the coexistence of a reduced spin current
J+

J+ = [J+]CSN sinγ (63)

and a nonzero dimerization

ε⊥ ∝ ±
[
C2

xM
K−
− cos γ +

1
2
C2

zM
K+
+

]
. (64)

An important observation is that the minimal value of the
variational energy (56) is still given by expression (32).
Therefore, the energies of the MSN and CSN phases are
related as

EMSN = ECSN +
K+ − 1
2K+

M2
+.

So in sector B (K+ > 1) the MSN phase is energetically
less favorable than the CSN phase, and the ground state
should be chosen between CSN and D phases. Accordingly,
in sector C (K+ < 1) the competing phases are MSN
and D.

Consider first sector B. Here we need to compare the
ground state energies of the D and CSN phases given by
equations (33, 53). These are of the same order when the
mass gaps of the two phases, equations (31, 46), become
comparable. Notice that the coupling constants z1 and z⊥
are both proportional to g⊥ and, hence are of the same
order of magnitude; their ratio is

z⊥/z1 = C
√

K+, (65)

where C is a nonuniversal number. Therefore, the condi-
tion

z
2

2−dD

⊥ ∼ z
2

2−d1
1 (66)

can be satisfied only in some vicinity of the line K+ =
1 where scaling dimensions of the operators D and O1

become equal.
As already mentioned, it is not possible to establish a

precise relationship between the parameters of the orig-
inal, microscopic model (3) and the effective low-energy
theory (25). As a result, the parameter C in (65) is un-
known. Therefore we are forced to consider two cases,
z1 > z⊥ and z1 < z⊥, on equal footing and draw plau-
sible scenarios for each of them, leaving the final choice to
future numerical work.

Setting K+ = 1 + δ with |δ| � 1, we find that the
condition (66) translates to the relation

δ = (1 − K−)
ln(z⊥/z1)
ln(1/z1)

. (67)

This relation determines a line δ = δ(K−) which lies en-
tirely in sector B (δ > 0) and is located very close to the
line K+ = 1 only if z1 < z⊥. Under this condition the rela-
tion (67) determines a phase boundary between the CSN
and D states. The transition is of first order, associated
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11 00

Fig. 2. Possible phase diagrams. The left panel corresponds to
the case z⊥ < z1 when a narrow region occupied by the massive
spin nematic (MSN) phase intrudes between the dimerized (D)
and critical spin nematic (CSN) phases. The right panel is the
case z⊥ > z1 where the D and CSN phases are separated by a
first-order.

with discontinuities of the spin current and dimerization
order parameters. It can be easily shown that in the case
z1 < z⊥ the D phase, occupying a narrow region close to
the line K+ = 1, extends over the whole C phase.

In the opposite case, z1 ≥ z⊥, equation (67) has no
solution for δ > 0, implying that CSN is a stable ground
state in the whole sector B. Moving to sector C opens a
possibility for the MSN phase. If 1−K+ � 1, the condition
z1 ≥ z⊥ admits a small nonzero mass M+ given by (62).
Thus is sector C the upper boundary for the MSN phase
is K+ = 1. The lower boundary is found from the require-
ment cos γ < 1 (see Eq. (61)). Within the logarithmic
accuracy, this brings us again to equation (67), this time
for δ(K−) < 0.

Thus, if the ratio z1/z⊥ > 1, then the CSN and
D phases are “sandwiched” by the MSN phase occupy-
ing a narrow region in sector C

1 − (1 − K−)
ln(z1/z⊥)
ln(1/z1)

< K+ < 1 (68)

attached to the line K+ (see Fig. 2). In all this region
EMSN < ED. The transitions that occur on the upper and
lower boundaries of the MSN phase are continuous. When
moving from sector B to sector C through the MSN phase,
the mixing angle γ varies from π/2 to 0. Correspondingly,
the current J+ decreases from its nominal value [J+]CSN

and vanishes at the lower boundary, whereas the trans-
verse dimerization ε⊥ increases from zero at the upper
boundary and reaches its value ε0, equation (36), in the
pure D phase at the lower boundary (see Fig. 2). A possi-
ble way of driving the ladder to pass through these phases
is shown in Figure 3.

6 Ferromagnetic phase

Let us now consider sector D where K+ > K− > 1. This
condition implies that K+K− = R2 > 1, and so this sec-
tor corresponds to the case of a ferromagnetic interchain
interaction (g‖ < 0). The effective low-energy model

HD = H(+)
0 +H(−)

0 +λ2

√
K+∂xΦ+ sin

√
4π/K−Φ− (69)
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contains only one relevant twist operator and is dual to
model (40) describing the SN phase in sector A: mapping
between these two models is achieved by duality transfor-
mations

2λ1 → λ2, K± → 1/K±, Φ± → Θ±. (70)

Using this correspondence, we can readily translate the
results of Section 4 to the present case. In particular, the
spontaneously generated spin current J+ of the SN phase
transforms to the z-component of the uniform spin den-
sity. So the ground state of the system in sector D is ferro-
magnetic (F). Contrary to the spin nematic phase, the F
phase breaks time reversal invariance but preserves parity
P

(1)
S ⊗ P

(2)
L .

Shifting the field Φ− by
√

πK−/4 and passing to di-
mensionless notations for the coupling constant,

z2 = 2
√

πK+
λ2α

v

and total magnetization

S+ =
2πα√
K+

mz,

we write the variational energy density as

E =
1
2
(
M2

− + S2
+

)∓ z2S+M
1/K−
− . (71)

Its minimization yields a finite gap in the (–) channel,

M− = K
− K−

2(K−−1)

− z

K−
K−−1

2 (72)

which supports a nonzero magnetization directed along
the exchange anisotropy axis:

S+ = ±
√

K−M− = ±K
− 1

2(K−−1)

− z

K−
K−−1

2 . (73)

The (+) channel remains gapless. Together with the finite
spontaneous magnetization this circumstance makes the
longitudinal spin correlations algebraic and incommensu-
rate:

〈Sz
1 (x)Sz

1,2(0)〉 = 〈Sz〉2 − K+

8π2

1
x2

+ const
(−1)x/a0

|x|K+/2
cos q0x, (74)

where q0 = S+

√
K+/2α. The transverse spin correlations

are short-ranged.
The ground state is doubly degenerate: the two vacua

transforming to each other under time reversal. The cor-
responding topological kinks have a finite mass gap and
carry the relative spin

Sz
− =

1√
πK−

∫ ∞

−∞
dx ∂xΦ− = ±1

2
.

K+

K−

2
1

1

10

MSNCSNJ D

∆

Fig. 3. Left panel: two possible paths in the phase space of
the model parameters. Along the path “1” ∆ is increased with
∆′ kept constant at z⊥ < z1. In this case the model under-
goes two transitions, first from the critical spin nematic (CSN)
phase to a massive spin nematic (MSN) phase, and then from
the MSN phase to the dimerized (D) phase. The right panel
shows the qualitative behavior of the spin current (solid line)
and the dimerization order parameter (dashed line) along this
path. The path labeled by “2” corresponds to decreasing ∆′

with ∆ constant. Along this path the model moves from the
CSN phase towards a ferromagnetic one.

7 RG approach at A-D boundary

The results of Sections 4 and 6 are valid far enough from
the boundary between sectors A and D where one of
the two twist operators, O1,2, is strongly relevant while
the other is strongly irrelevant. On the boundary K− =
1 separating these sectors both twist operators become
marginal. Therefore we can expect that in the immediate
vicinity of the boundary,

K− = 1 − δ−, |δ−| � 1, (75)

far away from the SU(2)-symmetric point, i.e. K+ > 1
in the sense that K+ − 1 = O(1), the infrared behavior
of model will be controlled by the interplay between the
two parity-breaking operators with a nonzero conformal
spin, O1,2, and the longitudinal (conformal-scalar) terms
∂xΦ±

R∂xΦ±
L responsible for renormalization of the coupling

constants. So the starting low-energy model should there-
fore contain both twist terms:

H = H(+)
0 + H(−)

0

+ γ1∂xΘ+ sin β̃Θ− + γ2∂xΦ+ sin βΦ−. (76)

Here γ1,2 differ from λ1,2 by some multiplicative factors,
and

β̃ =
4π

β
=
√

4πK− =
√

4π

[
1 +

δ−
2

+ O(δ2
−)
]

. (77)

Notice that the two twist terms in (76) contain vertex op-
erators (the sines) of mutually dual and nonlocal fields, Θ−
and Φ−. Models of this kind cannot be treated by the vari-
ational method used in the preceding sections. This is why
in this section we address the RG flow of this model which
will be studied using a mapping of the bosonic Hamilto-
nian (76) onto a theory of four interacting real (Majorana)
fermions (cf. Ref. [10]).
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Let us first make all perturbations in (76) strictly
marginal. This can be done by the following rescaling of
the fields in the (–) and (+) sectors:

Φ− →
√

K−Φ−, Θ− → (1/
√

K−) Θ− (78)
Φ+ → √

q+Φ+, Θ+ → (1/
√

q+) Θ+ (79)

The meaning of the first rescaling is transparent: we en-
force the twist operators in (76) to have the scaling dimen-
sion 2. This rescaling generates a current-current term in
the (–) channel. On the other hand, fusing the two twist
operators, one generates a similar term in the (+) sector;
that will renormalize the parameter K+, K+ → K̄+ =
K+q+. Below we will set q+ = 1 − δ+ assuming that
|δ+| � 1. The Hamiltonian (76) then acquires the form:

H =
u

2

∑
s=±

[
(∂xΦs)

2 + (∂xΘs)
2
]
− 2u

∑
s=±

δs∂xΦsR∂xΦsL

+ γ1∂xΘ+ sin
√

4πΘ− + γ2∂xΦ+ sin
√

4πΦ− (80)

where δ± satisfy the initial conditions

δ
(0)
+ = 0, δ

(0)
− = δ−. (81)

It is understood that extra factors appearing due to rescal-
ing of K+ are absorbed into a redefinition of the coupling
constants γ1 and γ2.

The structure of (80) immediately suggests mapping
onto four real (Majorana) fermions, ξa (a = 0, 1, 2, 3).
This can be done using a correspondence

(Φ+, Θ+) ⇒ (ξ1, ξ2) , (Φ−, Θ−) ⇒ (ξ3, ξ0)

and standard fermionization rules for the currents and
vertex operators. The resulting theory is given by the
Euclidean action describing four degenerate massless
fermions with a chirally asymmetric interaction:

S =
3∑

a=0

∫
d2z (ξa∂̄ξa + ξ̄a∂ξ̄a)

+ 2πv

∫
d2z [δ+ ξ1ξ2ξ̄1ξ̄2 + δ− ξ3ξ0ξ̄3ξ̄0

+ γ+(ξ1ξ2ξ3ξ̄0 + ξ̄1ξ̄2ξ̄3ξ0)

+ γ−(ξ1ξ2ξ0ξ̄3 + ξ̄1ξ̄2ξ̄0ξ3)]. (82)

Here ξa(z) and ξ̄a(z̄) are holomorphic (left) and anti-
holomorphic (right) components of the Majorana fields,
z = vτ + ix and z̄ = vτ − ix are complex coordinates,
∂ = ∂/∂z, ∂̄ = ∂/∂z̄, and

γ± =
π3/2α

2πu
(γ1 ± γ2) . (83)

Due to its chiral asymmetry, the interaction in (82) gives
rise to renormalization of the velocities already on the one-
loop level. For this reason we will discriminate between the
velocities of different Majorana species, and set va = v(1−
4πρa) (a = 0, 1, 2, 3), where the dimensionless parameters

ρa are subject to renormalization with initial conditions
ρ
(0)
a = 0.

Using the standard fusion rules for fermion fields [33],
one can easily derive the following one-loop RG equations:

˙δ+ = −2γ+γ−, ˙δ− = 0, (84)
˙γ+ = δ−γ−, ˙γ− = δ−γ+, (85)

ρ̇1 = ρ̇2 = γ2
+ + γ2

−, (86)

ρ̇3 = γ2
+, ρ̇0 = γ2

−, (87)

where ġ ≡ dg(l)/dl, l = ln(L/α).
First of all, we observe that the coupling constant δ−

stays unrenormalized:

δ−(l) = δ−(0) = δ−. (88)

Representing λ± as

γ± = g1 ± g2, g1,2 = (π3/2α/2πu)γ1,2

we rewrite the first, third and fourth RG equations as

˙δ+ = −2
(
g2
1 − g2

2

)
(89)

ġ1 = δ−g1, ġ2 = −δ−g2 (90)

We see that, depending on the sign of δ−, either g1(l) or
g2(l) grow up upon renormalization:

(a) δ− > 0

g1(l) = g
(0)
1 eδ−l, g2(l) = g

(0)
2 e−δ−l → 0. (91)

Strong-coupling behavior of g1(l) in (91) is associated with
a dynamical generation of a mass gap

m1 ∝ |g1|1/δ− . (92)

(b) δ− < 0

g2(l) = g
(0)
2 e|δ−|l, g1(l) = g

(0)
1 e−|δ−|l → 0. (93)

Here the mass gap is estimated as

m2 ∝ |g2|1/|δ−|. (94)

The cases (a) and (b) describe the CSN and F phases, re-
spectively. Estimations (92), (94) are consistent with the
power-law scaling of the corresponding mass gaps, equa-
tions (46, 72). In both cases, |δ+(l)| flows to strong cou-
pling. It goes to large negative values in the case (a), im-
plying that K+ becomes even larger upon renormalization.
In the case (b) it flows to large positive values; so the effec-
tive K+ significantly reduces, and that might indicate the
importance of the neglected twist operator O3. Stability
of the F phase is therefore under question.

Exactly at the boundary between sectors A and D
δ− = 0. In this case both g1 and g1 stay unrenormalized.
Moreover,

δ+(l) = −2(g2
1 − g2

2)l. (95)
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So, if in addition we set g1 = g2, the 1-loop RG will display
a weak-coupling regime for all coupling constants. This
is the self-dual point of the model where the interaction
is not renormalized: for all effective couplings parametriz-
ing interaction the β–function vanishes. Amazingly, in this
case the Majorana action (82) decouples into two chirally
asymmetric, independent parts, S = SI + SII, where

SI =
∫

d2z

(
3∑

a=1

ξa∂̄ξa + ξ̄0∂ξ̄0 + gξ1ξ2ξ3ξ̄0

)
(96)

and SII is obtained from SI by reversing the chiralities of
all the fields. Notice that even though the present case
corresponds to an essentially anisotropic regime (remem-
ber that we are far away from the SU(2)-symmetric point
of the model), the effective theory on the boundary be-
tween sectors A and D (K− = 1) with the self-duality
condition g1 = g2 exhibits an enlarged, chiral SO(3) ⊗
SO(3) symmetry. Consistent with this symmetry is renor-
malization of the velocities. The velocity of the singlet
fermion, ξ̄0, stays intact: ρ̇0 = 0. However, the triplet ve-
locity is renormalized. The RG equation ρ̇t = 4g2 (ρi ≡ ρt

i = 1, 2, 3) shows that 4πρt(l) increases upon renormal-
ization and reaches values of the order of 1 in the region
where g2l ∼ 1. This sets up an infrared energy scale in
the problem, ω0 ∼ Λ exp(−const/g2), at which the triplet
collective excitations soften significantly. This is in agree-
ment with the exact results for the spectrum of model (96),
recently obtained by Tsvelik [32].

Interestingly enough, the exact solution [32] shows that
the chiral SO(3) symmetry of the action (96) is sponta-
neously broken at T = 0, and the ground state of the
model represents a “chiral ferromagnet” characterized by
a nonzero expectation value of the vector current:

〈I〉 �= 0, Ia = −(i/2)εabcξbξc.

Similarly, for action SII

〈Ī〉 �= 0, Īa = −(i/2)εabcξ̄bξ̄c.

As long as the actions SI and SII are decoupled, there
is no correlation between 〈I〉 and 〈Ī〉, or equivalently, be-
tween the magnetization m = 〈I〉 + 〈Ī〉 and spin current
j = 〈I〉−〈Ī〉. Such correlation appears upon deviation from
the A–D boundary since in this case chirally-symmetric
terms that couple the actions SI and SII (and also intro-
duce a finite XXZ anisotropy) are generated. Thus, in the
A-vicinity of the A–D boundary mz �= 0, jz = 0, whereas
in the D-vicinity the situation is just inverted: mz = 0,
jz �= 0. So, the resulting picture at the A–D boundary de-
pends on the side from which this boundary is approached,
implying that the CSN – F transition is first-order.

Even though the action S = SI +SII provides the sim-
plest field-theoretical model for a frustrated ladder with
a chirally asymmetric interaction and, hence, is quite in-
teresting in its own right, we will refrain from its further
discussion because it does not account for the low-energy
properties of the zigzag spin-1/2 ladder with the generic
SU(2) symmetry (the point K+ = K− = 1).

8 Conclusions

In this paper we have analytically derived the phase dia-
gram of the spin-1/2 anisotropic zigzag ladder with a weak
interchain coupling (J ′ � J). Using the Abelian bosoniza-
tion method combined with a variational approach, we
have found that, depending on the anisotropy parameters,
the system may occur in several possible phases. These in-
clude spontaneously dimerized phases which may or may
not preserve parity, phase D and massive spin nematic
(MSN), respectively. In addition, there can exist a non-
dimerized, parity-breakin phase, which is the critical spin
nematic phase (CSN), as well as a ferromagnetic phase
(F). While some of these phases have already been an-
ticipated earlier (see Refs. [10–14]), the detailed analysis
of the MSN phase, as well as the duality between the F
and CSN phases, discussed above, represent novel results
which provide a deeper characterization of the whole phase
diagram of the model. In particular, we have shown that
the CSN phase extends well beyond the XX limit and cov-
ers broad regions in the parameter space of the XXZ model
(see sectors A and B in Fig. 1). We have also shown that
each of these phases is characterized by topological exci-
tations carrying fractional quantum numbers.

Starting from a vicinity of the XX point, we ad-
dressed the nature of the transition between the CSN
and D phases taking place upon increasing the intra-chain
anisotropy parameter ∆, say, at a fixed positive value of
∆′. As follows from our variational analysis, this transition
can occur either directly being discontinuous, or in two
steps, i.e. via a formation of an intermediate MSN phase
(see Fig. 2). Which of these two possible scenarios can be
realized depends on fine details of the microscopic model.
The control parameter of the low-energy effective theory
is the ratio z1/z⊥ between the amplitudes of the main
competing perturbations — the twist and dimerization
operators. If z⊥ > z1, the CSN – D transition is first or-
der. In the opposite case, z⊥ < z1, the CSN and D phases
are sandwiched by the MSN phase characterized by the
coexistence of a finite spin current with dimerization. The
variational approach suggests that CSN–MSN and MSN –
D transitions are continuous. Even though this approach
is known to be inadequate to identify universality classes
of the transitions, we would argue that the CSN–MSN
transition is of the Berezinskii-Kosterlitz-Thouless type,
while the MSN – D is of the Ising type.

As we already emphasized, the effective low-energy
model which has been studied throughout this paper actu-
ally represents a wide class of frustrated spin chains shar-
ing the same symmetry properties with the model (1).
Hence we cannot a priori predict which of the above sce-
narios would occur for the Hamiltonian (1). The accuracy
of the recent DMRG calculations [11,12] for the S = 1/2
zigzag ladder (3) was reported to be inadequate to resolve
this issue. Moreover, the non-linear σ model approach of
reference [17], which excludes the massive chiral phase for
half integer spins, is only valid in the vicinity of the clas-
sical Liftshitz point j = 1/4.
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Appendix A: More about sector C

In this appendix we address the role of the so far neglected
twist perturbation λ3O3 which becomes relevant in sector
C. Adding this term to the effective Hamiltonian leads us
to the following theory:

HC = H(+)
0 + H(−)

0

− λ⊥
πα

cos
√

4πK+Φ+ cos
√

4πK−Θ−

+
2λ1√
K+

∂xΘ+ sin
√

4πK−Θ−

+
λ3√
K−

∂xΦ− sin
√

4πK+Φ+. (A.1)

It is convenient to introduce dimensionless notations for
the coupling constant

z3 = 2
√

π

K−
λ3α

v

and the z-component of the relative spin density,

Q− = 2
√

πα∂xΦ−.

The variational approach we followed in Section 5 is
straightforwardly generalized for the present case. As com-
pared to Section 5, here we have two additional variational
parameters: the relative spin density Q− and a mixing an-
gle ζ for the field Φ+. The variational energy then depends
on six variables:

EC =
1
2
(M2

+ + M2
− + J 2

+ + Q2
−)

∓ z1J+M
K−
− sin γ ∓ z3QM

K+
+ sin ζ

− z⊥M
K+
+ M

K−
− cos γ cos ζ. (A.2)

Its minimization yields the following set of equations:

M
K−
− (z⊥M

K+
+ sinγ cos ζ ∓ z1J+ cos γ) = 0,

M
K+
+ (z⊥M

K−
− cos γ sin ζ ∓ z3Q− cos ζ) = 0,

J+ ∓ z1M
K−
− sin γ = 0,

Q− ∓ z3M
K+
+ sin ζ = 0,

M−(1 ∓ z1J+K−M
K−−2
− sin γ

− z⊥K−M
K+
+ M

K−−2
− cos γ cos ζ) = 0,

M+(1 ∓ z3Q−K+M
K+−2
+ sin ζ

− z⊥K+M
K−
+ M

K+−2
+ cos γ cos ζ) = 0. (A.3)

There exist solutions of these equations in which the sec-
ond twist perturbation λ3O3 plays no role:

(i) γ = ζ = 0 , J+ = Q− = 0 – D phase;
(ii) γ = π/2 , ζ = 0 , Q− = 0 – CSN phase;
(iii) 0 < γ < π/2 , ζ = 0 , Q− = 0 – MSN phase.

There exists a pair of solutions which are “dual” to (ii)
and (iii), i.e. can be obtained from the latter by the re-
placements z1 → z3, J+ → Q−, M+ ↔ M−:

(iv) γ = 0 , ζ = π/2 , J+ = 0. This is a critical phase with
a nonzero relative magnetization (CRM), Q− �= 0;

(v) γ = 0 , 0 < ζ < π/2 , J+ = 0 – the massive version
of the above phase (MRM). In these two phases the
twist operator O1 plays no role.

There also exist solutions in which both twist perturba-
tions are effective. One of them corresponds to the case

(vi) γ = π/2 , ζ = π/2 , in which the z⊥-perturbation is
ineffective and the variational energy decouples into a
direct sum ECSN +ECRM . The resulting phase is fully
gapped and represents a mixture of CSN and CRM
phases – mixed (M) phase with nonzero J+ and Q−.

The case of arbitrary values of the mixing angles, γ, ζ �=
0, π/2, should be abandoned because, as follows from
equations (A.3), it requires that z2

1z
2
3 = z2

⊥, — a condition
which represents just a point in the parameter space of the
model and which, on the other hand, cannot be satisfied
for all coupling constants being of the same order.

The minimal value of the variational energy is again
given by equation (32). From this expression it is obvious
that in sector C (K± < 1) the M phase has a lower energy
than each of its “constituents”, i.e. CSN and CRM phases.
So we are left to find out if the M and MRM phases can
compete with the D and MSN phase.

Consider the MRM phase assuming the most favorable
condition z3 > z⊥. Since the MRM phase is “dual” to the
MSN phase, from equation (68) we can read off the range
where it can exist:

1 − (1 − K+)
ln(z3/z⊥)
ln(1/z3)

< K− < 1. (A.4)

We see that, except for an extremely unrealistic case
z2
3 > z⊥, the condition (A.4) determines a vicinity of the

negative semi-axis K− = 1, K+ < 1, which is located in
the unphysical part of the (K+, K−) plane, well beyond
sector C. Thus the MRM phase should be abandoned.

Let us compare the energies of the M and MSN phases.
In both cases the mass M− is given by the same ex-
pression, so we only need to compare the masses in the
(+) channel. Comparing the mass M+ in the M phase,
M+ ∼ z

1/(1−K+)
3 , with that in the MSN phase, equa-

tion (62), we find that, except for extremely small values
of z⊥, namely z⊥ < z1z3, the MSN phase is always more
favorable.

Finally, we are left to compare the energies of the M
and D phases. On one hand, in the D phase we are below
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the line (68). This means that z
1

2−kD

⊥ > z
1

1−K−
1 imply-

ing that the mass gap of the D phase is greater than the
mass M− of the M phase. On the other hand, to the left
of the MSD-D transition line (A.4) we have the condi-

tion z
1

2−kD

⊥ > z
1

1−K+
3 that tells us that the mass of the

D phase is greater than the mass M+ of the M phase.
Consequently, the D phase is energetically more favorable
than the M phase.
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